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Integral equations whose kernels are complicated by the presence besides the 
well known component, the so-called Cauchy kernel, of an additional term 

with nonintegrable singularities at the ends of the variation interval of the 

independent variable, are investigated in some detail. Integrals of this kind 

occur in investigations of a group of special mixed problems in the potential 
and elasticity theories. Possible approaches to the interpretation of particular 
equations, not only with symmetric limits (differing only by their signs) of in- 
tegration, are outlined. Such equations undoubtedly deserve attention owing to 

the interest in them in the applied field. 

1. Let us analyze in detail the solutions of the following equation of the first kind: 

1 
---$- o(t) ~-q-&&t ==f(to), --FGhGP s [ t - t,, (1.1) 

Yo 

where h is a parameter which may assume any real or complex values, and the free 

term f (t,) can be any arbitrarily specified Holder function on the closed real seg- 

ment y. (- p < to Q p). 
The distinctive method developed here for analyzing a group of mixed problems 

of the potential theory has considerably assisted (in its advanced development stage) 
in the discovery of means for transforming singular integral equations of a particular 

structure and, then, in revealing properties of their solutions. 
Note that in the present investigation the harmonic transformation of the complet- 

ed process is almost entirely omitted and only verification and refinement of the results 
obtained by it are presented. The starting point of the investigation which allowed 

subsequent analysis of Eq. (1.1) was the observation on a mixed problem of the theory 

of potential for a semicircle. 
Equation (1.1) was first considered for real values of parameter h within the limits 

-1 <h < 1 (the limit cases of h = +I require separate analysis). Setting h = 

cos e we were entitled to assume 0 < Oln < 1; it appeared expedient to introduce 
in the addition to parameter 8 the constant cc = 1 - B/n (the solution is extended 
to the case of any real and complex I . (see Sect. 3) ). 

Equation (1.1) has generally solutions of two kinds. One of these, as shown sub- 
sequently, is continuous in the closed interval - p Q t < p and vanishes at its ends 
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f = f P) l Es structure is defined thus: 

0 (to) = &- 1 x (a: t7 to) f (t> [A - 1 _ipSil, ] & 
Yo 

x @* to1 = (-j+g” (, $-Lit)-@+ (G$f$yqky 
It is, however, valid only when the supplementary condition 

G.2) 

(1.3) 

is satisfied by the additional term f (t) (the limit cases a = 0 and a = 1 are 
not considered here). 

This solution appeared in [l] without proper substantiation. Unfortunately, the 
multiplier i ctg (xa / 2) at the integralinthe limiting condition (1.3) was omitted. 
However it is important only in the limit cases of a = 0 and a = 1 which (as 
well as in the related cases of 0 = z and 9 = 0 ) require special consideration, 

The second qualitatively different discontinuous solution (with integrable singularit- 
ies at points t = f p was obtained much later and is adduced here for the first time, 
It is of the form 

P w = ~Sx.(~;t,to)l(t)(~+~)dt3 (1.4) 

Yo 

eiie(-$+-)‘e!nA (-$;f(t)) +2isin6A(6) X 

Ce-ie (ti) 
---P---r0 

6’S + eiB (a)-“n] , - p < to < p 

where the binomial with the constant multiplier A (u) is the solution of the homo- 
geneous equation (1.1) (when f (t) = 0). It should obviously not be lost out of sight 
but without necessarily maintaining it in formula (1.4). (That solution of the homo- 
geneous equation (1.1) was also presented in [l] in a different form. The supposedly 
another different form of it appeared there by misunderstanding). 

We adduce some of the integral formulas that may be required in testing final 
conclusions 
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where z is the affix of any arbitrary point lying outside the segment yO, and point 
to is located on ?0 so that the second (in sequence) integral on the left is taken 

in the sense of the principal value. 
The linear-fractional power function appearing under the integral sign is the limit 

value of function 

(*)*a = exp (&alng-) * (*)*a (zeta) 

with z tending to point t, of the upper side of the cut drawn along segment ya; 
simultaneously 

ln p-z ’ dt -= 
-p-z s t--z’ ( In d+)_ = ni 

Yo 

We also introduce the function 

ln p - P% ’ dt 
- p - ps/z = s t - pa/z 

Yo 

regular outside the rays y1 (- p, -oo; 00, P) (which complement y,, to the 
whole of the real axis). 

In what follows a significant part is played by the relationships 

( p - p*/z _p_pp’,z) *a = (+J*a x (e”:E; :::‘,: (1.6) 

It will be seen that the relation between these functions is different in different half - 
planes of variation of variable 2. 

R e m a r k 1. If the specified free term of Eq. (1.1) automatically reduces fun- 
ctional (1.3) to zero, then formulas (1.2) and (1.4) yield two solutions of EJ. (1.1). 
One of these is continuous in the closed interval - p f to < p and vanishes at its ends, 
and the second has at the ends integral singularities. The two solutions differ from one 
another by some solution of the homogeneous equation (1.1) (within the constant factor). 

R e m a r k 2. It will be readily seen that for the free term of Eq. (1.1) equal 
to some constant C the related to it in conformity with (1.2) density o (t) becomes 
identically zero; hence the constant C must also (in conformity with (I. 3)) be made 
equal zero. This becomes at once clear if we take into account, besides formula 
(1.2), the integral relationships (1.5). As previously indicated, formula (1.2) yields 
only those solutions of Eq. (1.1) that are continuous on the closed segment yO, which 
is only possible when its specified right-hand side satisfies the limiting condition(1.3). 
This makes it at once clear that, when the problem is that of deriving (1.2) as the sol- 
ution for density, the free term of Eq. (1. l), which is a constant quantity, can only be 
zero, and, consequently, the density itself must unavoidably become identically zero. 
However, the solution of the other type (defined by formula (1.4)) is necessarily non- 
zero when the free term of Eq. (1.1) is constant. Let us assume it to be unity, then 
in this simplest case the solution, as can be readily seen, is provided by any of the 
following formulas: 

-s/n 
- eVie p-to e/n 

( -P---t, ) J T 
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which differ from each other by some solution of the same homogeneous equation. 

2. It can be shown that the density (I) (t) determined by formula (1.2) with any 
Halder function f (t) actually satisfies Eq. (1.1) only with an accuracy to some con- 
stant defined by the functional appearing on the left of the first of equalities (1.3). 

(Any function f (t) supplemented by the functional on the left-hand side of the first 

of equalities (1.3) reduces the function in the second of these equalities to zero), This 
density p (t), unlike the other, is not only bounded on the closed segment y,, but, 
also, vanishes at its ends t, = & p. The author had checked this by obtaining solu- 

tion (1.2) for comparatively simple particular values of the free term. Validity of 
this statement can be easily ascertained also in the general case. To simplify the 
proof we assume the specified function f (t) to be differentiable the required number 

of times. 

We represent the sought density (1.2) in the form 

(2.1) 
0 (t,) = f (t,) P (a; t,) + q (a; to) 

p (a; h) = & S x (a; t, to) [ & - ’ t .- p2 / to ] dt 
V” 

q (a; to) = (to - +) &- 5 X (a; t, to) g (ty to) t -$, to 

VO 

g (t, 4,) --= I (f) -- f (I”) 
1 - to 

The expression for function q (a; to) can be written thus: 

Q (a, to) =~= (to - $) {&- \ x (a; t, to) :’ (” :p’,f,‘~~’ to) dt + g (to, to) r (a; toI> 
Y* 

where the newly introduced function 

r (a; to) = -& 
s x (a; t, to) t _ ;;, to 
YR 

can be represented, after calculating its integral, as 

r (ai to) z - 2 sip na II ( e-nia P - to 
1 
a _ enio 

( 
p---o -cG 

-p---o -P---o 1 1 
Surveying the elementary (in comparison with other used subsequently) formulas 

(1.5) and (1.6) and taking into account the definition of funCtiOn x (a; t, to) , We 

conclude that p (a; to) = 0. As the result we obtain the simpler (in comparison 

with the initial) formula 

o (to) =-- 4 (a; to) = (to - $1 {& 5 x (a; t, to) h (t, to) t Li2y,, dt + (2* 2, 
-0 

g (to, t0) r (a; to)} 
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where function h (tt, to) is continuous on yO owing to the condition imposed on 

f w 
To determine the behavior of the (linear fractional with respect to t) function 

which appears here as the third factor in the integrand and (non~nearly) dependent al- 
so on the variable to it is sufficient to observe its variation near the ends of segment 

(C- 
; in other words for the following simultaneous values of their affixes: t=* 
e) and to = f (p - eo), where e and e. are as small as desired posit- 

ive quantities, The behavior of the considered function in the vicinity of these affix- 
es is determined ( with higher order smalls taken into account) by the equality 

ca 

ltr,:9, I= I+-- ~or[+-~o+P~($-jv]-l 
v=a 

(2.3) 

which shows it does not exceed in modulus unity. 
Hence the considered function remains bounded on the closed interval y. and, 

c~equ~~y, the integral in (2.2) converges absolutely, This implies that the den- 
sity o (8) vanishes at the ends of segment y. (0 < a < 1). 

Thus the assumption of reality of parameter X strictly varying within the limits 
- 1 < h < 1 has predetermined (together with other factors) the possibility of 
realizing the way for deriving the solution of Eq. (1. l), outlined by the author. 

3. Let us now assume that parameter 3, may have any real or complex values so 
that 5 = h, + i& where h, and %s are real (positive or negative) numbers. 
It is expedient to retain the previous repros entation of parameter h, although this 
time as the cosine of the complex argument 6 = 6, + i6, with real 6, and 

+e defined in terms of the specified hi and As . It is advisable to introduce 
besides the complex argument 6 the complex quantity a = 1 - Wj3t. The basic 
formula 

h = cos 6 = cos 6, eh 6, - i sin 6, sh 6, 

splits into two real equalities 

(3.1) 

h, = cos 6, ch Q,, L, = - sin 6, sh 6, (3.2) 

At first glance it may seem that ~de~nden~y of these or other parameters li, 
and h, (arbitrarily specified) it is not possible to maintain the same, or more precis- 
ely, nonnegative the sign of sin 6, , on the contrary it seems probable that the sign 
of this quantity (when passing from one k to some other) changes, Meanwhile, the 
attainment of the aim, as will become clear in the following, of the intended extens- 
ion appears possible when the nonnegative sign of sin 6, is determined beforehand, 
in other words for the real component of argument 6, within the limits 0 < 6, 
( z. (The possibility of such selection of the variation interval of 6, is also im- 
portant beciluce then the real part of parameter cb = 1 - @/rr. is less than unity, 
with the exception of the limit case 6, = 0 which requires special consideration). 
Looking somewhat ahead, we would point out that it is, nevertheless, possible to fix 
the interval 0 < 6, < n (in conformity with ones objectives) which absorbs any 
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Value Of 6, (defined by the formulas adduced below) that correspond to any desired 
(real) parameters h, and 3LS. 

Eliminating from (3.2) the quantities 6, , we obtain the equation 

Es + (krS + b2 - 1) t - hS2 = 0, E = sin 26.r (3.3) 

In considering this equation we have to deal with the radical 

R = I@,2 + kg2 - 1)2 + 4h,21‘/2 = I&,2 + As2 + I)* - 4?$]"" (3.4) 

and bear in mind the following evident inequalities: 

lhi2 + h22 - 1 \ < R < iI2 + As2 + 1 (3.5) 

Here and throughout the following analysis the radical containing nonegative quantit- 
ies are taken at their arithmetic values. 

For any vr contained within the Indicated limits, from (3.3) we obtain 

sin 0, = I--‘/, (hr2 + hs2 - 1) + l/,Rl'iz (3.6) 

in which for obvious reaSoru we take R with the plus sign. This formula is consistent; 
the expression in square brackets does not exceed unity, which can be readily Seen 
from the first of inequalities (3.5). 

It would be possible to first derive, instead (3.3), the equation 

Y2 - (A,2 + h,2 + 1) ‘1 + h,2 = 0, IJ = toss or 

which yields 
cos ur = f [l/s (hr2 + h22 + 1) - V,Rl’/z (3.7) 

At this stage R is taken with the minus sign, Since otherwise the expression in 
square brackets according to the left inequality in (3.5) (when hra + hS2 > 1 as 
well as hr2 -i-- hS2 < 1) would certainly exceed unity (being equal unity in the first 

case only when h, = f 1 and h, = 0 and R = 0). 
The expression in Square brackets in (3.7) is obviously nonnegative and, convenient- 

ly, does not exceed unity. This is evident from the expression for R in (3.4) and 

from the left inequality in (3.5). 
Passing now to the first of equalities (3.2) and taking into account that the quantity 

ch 6, is positive for any (real) 4, , we conclude that it is necessary in formula 

(3.7) to leave at the external radical the same sign as the intrinsic Sign of the real 

component h, . This is very important. In fact, taking as the base the Sign of the 

right-hand side of (3.7), as proposed above, it is already po&ble (using the nonnegat- 

ive sin 6 1 yielded by (3.6)) to fix uniquely the argument 2) r by directly taking it 
from the interval 0 < v1 < n. 

It should be stressed that fixing the magnitude and sign of the pure imaginary corn- 

ponent of argument ti is entirely unambiguous, since by the second of equalities (3.2) 

it is obvious that a Sign opposite to that of the pure imaginary component of the speci- 
fied complex parameter h is to be assigned to component 6s . Let US now set 

(3.3) 
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where 6 and q are to be assumed known. 
It is further desirable to ascertain that the (positive) quantity 6 is in fact (in acc- 

ordance with the first of equalities (3.8)) smaller than unity. This is perceived from the 
readily verified inequality 

(c,“,,) 

a 
1 -I= f [(V + &z2 - 1) + RI > 0 

Since 6 > 1, thk first equality implies that 

6, = In (6 f V/62 - 1) (3.9) 
where the plus sign is taken for 6, > 0 and minus for 6s < 0, with 6, vanish- 
ingfor 6=1. 

After conventional transformations we obtain 

h2 = 1 + (hIa + h,f- i) + R 

which implies that 1 h I > ‘i (6 > 1 9 I). 
It is admissible to determine component 6, in a form somewhat different from 

(3.9) by composing the ratio of the first of equalities (3.8) to the second, We have 

es= +1ll* (3.10) 

which shows that 6, is positive when h > 1 , and negative when h < -1. Form- 
ulas (3.9) and (3.10) are evidently adequate. 

Thus the considered here more complex variant differs from the original [ -1 < 
3L < I], and what is important, from the considerably widened variation range of 

parameters 6 (01). 

4. With a more or less thorough understanding of the developed process as a 

whole the thought about the validity of interpreting the same (1. ) and (1.4) formulas 
for any (including also complex) constant h. becomes clearer and more persistent. 

And here the true adjustment of the tentatively formulated final conclusion is obtain- 

ed, as previously [al, simply by direct formal substitution in the singular equation 

(1.1) of the values of densities yielded by relations (1.2) and (1.4). 
Let us actually substitute alternately into the input equation (1.1) the two differ- 

ent expressions (1.2) and (1.4) for the unknown density. In both cases we obtain fair- 

ly complicated singular multiple integrals whose content is difficult to grasp and each 
of which splits in turn into a number of simply complex multiple integrals. We had 
encountered them in a somewhat veiled form already when investigating the initial 

case of -1 < 1 < 1, i.e. for real I? and a (the author had obtained singular multi- 
ple integrals of an appropriately altered structure in [a]). These were subjected to a 

radical transformation consisting of changing the sequence of ordinary integrals in each 
of them. Then the inner ordinary integrals contained in the thus newly formed 
double singular integrals were determined in closed form. As the result, the input 

multiple integrals were reduced to the more elementary simple integrals with singular- 
ities of the same type. (As already pointed out, these relationships were in fact used 
previously, although not explicitly shown in systematic formulation). 

It will be readily seen that the expressions for the above multiple integrals now 
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derived in this manner are externally of the same form as the previous ones, except 
for the (implicitly contained in them) complexity of parameters 8 and & . 

We again stress that these formulas, now derived without deviation from, and in 
exact correspondence with formulas (I. 2), the first of equalities (3.2), and formula 

(3.7), in no way reduce the freedom of choice of a and 6 (unavoidably supplement- 
ed by conditions 0 < Re” j 5~ < 1 and 0 < Re CI < 1 of wnich the second is in- 
variably present only when the first is satisfied). This is fairly evident, since Eq. (1.1) 
does not contain self-conjugate values of density, but only the unknown density itself. 

Formulas for the transformation of specific double integrals to single integrals of 

the same type (which had not been presented anywhere before and are given here in 

full, since they are required for carrying out proper calculations) are of the form 

Yo Yo 

& ~gw{[ct!v( _y~,,)“( “,--It )Fa-&] x 
YO 

,l 
t _- pa ; to 

i 1 
/- sin c _ .&ma ( _P;.Ja]+}df 

A survey of these formulas immediately shows that they actually do not loose 

their meaning and remain unaltered also for complex 6 (a) under the sarile, not for 
the first time stated, conditions that limit the variation range of their real parts. The 
indicated integral relations are useful for checking the validity of the resolving form- 
ulas (1.2) and (1.4), when in addition to (4.1) one must bear in mind the formulas 

derived from these by the formal substitution of 0 / n for cc . 
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This is the position when Re (e/n) and Re (a) are numerically leas than unity, 
Inthe mutuallyexclusivelimitcases, when Re (e/n) = 1 or Re (a) = 1 as the 

resolving formula corresponding to each of them we take the one that is adapted to 

the other parameter, subject to the limiting condition Re(&) = 0 or Re (8 / n) = 

0 , respectively. (It is impled that formula (1.2) is the solution of Eq. (1.1) also 
when Re(a) =0 , which occurs when (1.3) is satisfied, and it is only then that the 
above assertion is entirely valid). Individual investigation of the cases of Re (6 / n) 
= 1 and Re (a) = 1 ,is somewhat difficult. 

5. Let us indicate a possible approach to the analysis of singular integral equations 

of a certain type; more complex equations of this kind appear, as a rule, in the analy- 
sis of some special mixed problems of the two-dimensional theory of elasticity in spec- 
ial configuration regions. 

To the uninitiated reader the basic idea of the proposed method may appear ‘some- 
what artificial and exaggerated, However the process of its application in practice is 

simple and its basic feactures are understandable and profitable, although the establish- 
ment and formalization of the idea itself was slow and difficult. This could have been 

due to that the problem was approached from distinctly altered and new positions, as 
compared with those the author had adhered in his earlier work related to the develop- 

ment of similar methods for application to fundamental problems of the theory of 

elasticity. 
let us assume that the right-hand half-plane of the variable z = 5 + iy is 

slit along the real segment y of length a issuing from the coordinate origin. For the 

semi-infinite region formed thus on the right, which we shall denote by S,we formul- 

ate the following boundary value problem. It is required to determine the pair of fun- 

ctions ‘Pr (2) and $r (z) which are regular in that region and vanishingly small in 
absolute value in its remote part, using the following boundary conditions, At the 
upper and lower edges of the y-slit the following conditions are, respectively, speci- 

fied: 

x%+(t) + sl+ 0) = f (0. xcp,- (t) + +\I-‘1- (t) = f (t); 0 < t < a (5.1) 

where x is some, generally, complex constant, and f (t) is the Holder function 
specified on that segment. These functions are subjected along the imaginary axis 
to the boundary condition of the fairly conventional type 

VI w + *l(t) = 0, t = iy (-- 00 < y < 00) (5.2) 
The elementary function 

V/a’ 
yields (with its suitably selected by<h, 

(5.3) 
w+ = a when 2 = 0 ) the conformal map 

of region S onto the lower half-plane of variable w. We then have at the upper and 

lower edges of the slit & (x) = f’ v a2 - 9, 0 < z < a, and on the imaginary 

axis w (+-iy) = * I/a2 + y2, 0 44 < 03. 
Using this conformally map$ng function, the thus formulated problem can be 

reduced to the comparatively easily analyzed Karleman equation (since the input 
boundary conditions do not contain derivatives of the unknown functions). Bearing in 
mind a similar possibility, and in conformity with our aims, we shall continue the 
analysis of the same boundary value problem in a different setting. 
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Adding and subtracting the biting equalities (5.1) term-by-term one from the 
other, we obtain relationships of the hind 

x IT,+ (t) + ‘pi- (611 + @-@ + 4x- @)I = 2f (Q (5.4) 

- - 
x Iqq (t) - ‘PI- @)I + h-#,+ (t) - *,1- @)I = 0, 0 i t < a (5*5) 

or equivalent to them. We add to these the equality which determines the auxilIiary 
function o (t) and is introduced on the same segment y by formula 

x [cp,+ (4 - ‘pr- (N - G$-@ - $1_ = 2o(t), O<E<a (5.6) 

The purpose of this ancilliary iimction by far exceeds the limits of explanation within 
the scope of the particular problem of the potential theory. The reasons for its introd- 

uction in the analysis in the form (5.6) will become clear subsequently. 

Adding the boundary condition (5.5) (in the already altered form) term- by-term 
to the just introduced ancilliary relation (5.6) and then subtracting these equalities 
term-by-term one from the other, we obtain 

cpl’@) --a”(t) = &cl, on Y, o<t<a (5, ‘1) 

-- 
ql+ (t) - $r- (t) = - w (t) on y, 0 < t < a 

It is expedient to represent equality (5.7) in the form 

rp1+ PO) - & 1 - o @) dt = q-1 (to) - -y& t-z s ’ =dt on y 
t---z 

Y Y 

z -+ to above Y z--+to below y 

We introduce the new function q (z) which is regular in region S in conform- 
ity with the equality 

from which follows that 

s;c (Ito) = 9- (to) on Y 

Hence function cp (z) can be continued through segment y , and is regular every- 
where in the right-hand half-plane; it will be seen that in the remote parts of the 

region the absolute value of this function can be made as small as desired. 
Dealing in a similar manner with the second basic equality (5.7), we introduce 

in the same right-hand half-plane the function 

(5.9) 

which also vanishes at infinity. 
We now substitute CP (z) and 9 (z) for functions ‘pl (z) and +r (z) determined 
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by (5.8) and (5.9), respecively, in the boundary condition (5.2) (satisfied along the 
imaginary axis) which, after this transformation assumes the form 

cp (to) + ql (to) = - & 1 $$dt - & 12%. at 
t + to 

Y Y 
to=iy (-CO<~<OO) 

From this we obtain for these functions representations of the form 

Taking these equalities into consideration, from (5.8) and (5.9) we obtain for the 

unknown functions the following expressions: 

(pi(Z) = -J- - s Co @) /& - & 
2nix t-z 

. \$at 
(5.10) 

Y ; 

1 l 

$1(z) = - 2ni 
s 
‘O(‘)&+1_ ._ 

t -- z s 

o & 

Y 
2nix y t + z 

passing in the first of these to the limit z --t to above and below segment y and 
adding term-by-term the obtained equalities (after multiplication by x ), we obtain 

X [$)+I (to) + Tpl-(to)] = $12 dt - $- 5 s dt t - to 
on y 

v Y 

Carrying out similar elementary transformations on the limit values of function 

$r (z) defined by formula (5. lo), we obtain an equality of a structure similar to 

the previous one, whose conjugate equality is of the form 

Applying the so far unused limiting condition (in the modifed form) (5.4)weobtain 
the singular integral equation which satisfies the ancillary function 61 (t) , and con- 

vince ourselves that this equation is of the form 

+ct,g+ 0 
&) at = f&J, h = G (5.11) 

Y 

(the required value of parameter h is obtained by a suitable of parameter x). 

Let us now assume that Eq, (5.11) has been somehow resolved and the obtained 
from it ancilliary function 61 (t) is introduced in the respe:tive integrals in formulas 

(5.10). This would yield the two functions ‘pr (z) and $r (z) which solve the 
boundary value problem. 

As already noted, the same problem can be solved comparatively simply using 
the conformal mapping function; in this context the following is also true. Having 
determined by using, as indicated, the mapping function (5.3) the solution of the 
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boundary value problem by the s~aightfo~ard conditions (5.1) and (5. Z), we compose 
the left-hand side of equality (5.6) using the obtained functions ‘pr (z) and % (~1~ 
The derived formula determines the doubled value of density w (t) which exactly 
satisfies the singular equation (5.11). 

It should be noted that for the three particular values of function f (1) for which 
the integral equation (5.11) yields to effective analysis, it is possible to complete 
quickly the study of the considered boundary value problem using directly formulas 
(5.11). We recall that the same equation (5. Xl) was considered in [3] in a different 
way in relation to real values of parameter h . 
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